Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Interface Focus ; 12(1): 20210042, 2022 Feb 06.
Article in English | MEDLINE | ID: covidwho-1583919

ABSTRACT

There is an unprecedented concern regarding the viral strain SARS-CoV-2 and especially its respiratory disease more commonly known as COVID-19. SARS-CoV-2 virus has the ability to survive on different surfaces for extended periods, ranging from days up to months. The new infectious properties of SARS-CoV-2 vary depending on the properties of fomite surfaces. In this review, we summarize the risk factors involved in the indirect transmission pathways of SARS-CoV-2 strains on fomite surfaces. The main mode of indirect transmission is the contamination of porous and non-porous inanimate surfaces such as textile surfaces that include clothes and most importantly personal protective equipment like personal protective equipment kits, masks, etc. In the second part of the review, we highlight materials and processes that can actively reduce the SARS-CoV-2 surface contamination pattern and the associated transmission routes. The review also focuses on some general methodologies for designing advanced and effective antiviral surfaces by physical and chemical modifications, viral inhibitors, etc.

2.
Emergent Mater ; 4(1): 101-117, 2021.
Article in English | MEDLINE | ID: covidwho-1169073

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) is by far the worst pandemic disease in the current millennium. The first human-to-human transmission was observed in December 2019 in China and is caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has infected millions of people within months across the globe. SARS-CoV-2 is a spike protein enveloped virus with particle-like characteristics and a diameter of 60-140 nm. Real-time PCR, reverse transcriptase PCR, isothermal PCR, immunological-based detection technique and nano-based diagnostic system have been explained for the identification and differentiation of different types of virus including SARS-COV-2. Synthetic nanoparticles can closely mimic the virus and interact strongly with its virulent proteins due to their morphological similarities. Some of the antiviral nanomaterials are also discussed, for example zinc oxide nanoparticle is an antiviral agent with a tetrapod morphology that mimics the cell surface by interacting with the viral capsid. It suppressed the viral proteins upon UV radiation due to reaction caused by photocatalysis. Hence, nanoparticle-based strategies for tackling viruses have immense potential. The second part of the review points to the latest in vitro and in vivo procedures for screening viral particles and the usage of nanoparticles in diagnostic and therapeutics. This would be beneficial for early detection and assists for the safe and effective therapeutic management of COVID-19.

3.
Emergent Mater ; 4(1): 131-141, 2021.
Article in English | MEDLINE | ID: covidwho-1068841

ABSTRACT

The COVID-19 has affected all major aspects of the society in a global perspective. The role of nanotechnology is much sought after in fighting this pandemic. Advanced materials based on nanotechnology are the basis of several technologies starting from masks and personal protection equipment to specific diagnostic tools that could diminish the impact of COVID-19. Development of nanotechnology-based products is therefore an absolute necessity for fight against COVID-19. We examine the fundamental concepts related to virology, histopathologic findings and how nanotechnology can help in fighting the disease. In this review we discuss the state of the art and ongoing nanotechnology-based strategies like antiviral coatings, 3D printing and therapeutics to fight against this deadly disease. The importance of using nanoparticles in point of care tests and biosensors is also highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL